
Electronic structure of surfaces 
 

Electronic rearrangement at the surface: relaxations and reconstructions 
 

 The abrupt termination of a solid at the surface has 

several consequences on the electronic structure.  The electrons 

rearrange to minimize the surface energy and this rearrangement 

implies also the rearrangement of the surface atoms. The term 

relaxation is usually employed to designate the vertical 

displacement of the first layer of atoms toward the bulk or away 

from it. This type of restructuring is often observed with metals. 

The most general case is a contraction of the first interlayer 

spacing. One can see how this arises by considering a Wigner-

Seitz cell with electrons distributed symmetrically around the 

central ion core.  If this electron distribution were maintained at 

the surface, a strong electronic corrugation would be present.  

Energy can be lowered by ‘flattening” the electronic distribution. This produces an inward 

displacement of charge that reinforces back-bonding and compensates partially for the broken 

bonds produced when creating the surface. The displacement of the center of gravity of negative 

charge causes also the atoms to move inward to minimize their energy by embedding themselves 

as much as possible in the negative charge cloud. This is the qualitative explanantion for the 

inward relaxation.  Most of the observations of  the effect were made by LEED, which is 

specially sensitive to vertical distances in the surface. 

 

 Semiconductors exhibit special reconstructions that are due to the covalent and 

directional nature of the atomic bonds.  The unpaired electrons at the broken bonds in the 

surface, which are now half-filled, are in a high energy state.  Energy is lowered by 

rehybridization. Atoms undergo substantial displacements to form new bonds.  The half-filled 

orbitals combine to make new filled bonding and emtpy antibonding orbitals. The resulting 

surface structure can be quite different from the unreconstructed one. These reconstructions have 
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been intensively studied because of their importante in semiconductor technology, contacts, 

surface states, etc. Examples include the Si(111)-(7x7),  Si(100)-(2x1) and most other 

semiconductor surfaces.  The subject will be treated separately later on. 

 

Insulators, particularly ionic materials have localized valence orbitals with little sharing of 

electrons between anions and cations, compared to metals and semiconductors.  As a result, 

surfaces that are electrically neutral, like the (100) planes of alkali halides, are essentially stable 

and retain their bulk structure. Polar surfaces, like the (111) surfaces that contain one type of ions 

only are less stable and tend to acquire counterions from the environment, so as to discharge the 

electric dipole. These surfaces tend to reconstruct. 

 

 Compounds like oxides present the additional problem of surface stochiometry.  In 

vacuum environments in particular, it is easy for the surfaces to be oxygen deficient.  This is a 

result of thermodynamics that requires a given pressure of O2 gas in equilibrium with the oxide. 

Therefore, in vacuum oxides tend to decompose. The missing oxygen can give rise to altered 

periodicities, when the vacancies form ordered patterns. 

 

 We will now review various aspects of the electronic structure of surfaces.  These include 

the work function, the origin and types of surface electronic states and core level shifts.  We will 

also review the experimental methods to determine electronic structure, both band structure and 

density of states.  The most important techniques for these studies are based on photons. 

 

Work function 
 

The work function of a surface is defined as the minimum energy required to extract an 

electron from the interior of the crystal to the outside. The potential energy of the positive ion 

cores holds the electrons bound in the crystal and prevents them from “spilling” out. The electron 

wavefunctions decay exponentially into the vacuum region, so that they have a small but non-

zero density n(z) away from the surface. The excess of electron density outside of the crystal 

implies a lower charge density inside, for charge conservation. The abrupt termination of the 

positive charge of the ion cores at the surface can be seen as a perturbation that produces Friedel 

oscillations, as that shown schematically in the figure. A model used often to calculate these 

effects is the jellium model. In this model the positive charge of the ion cores is spread out into a 

smooth constant density of positive charge that is held 

rigidly in space. The electron density is left free to 

adopt the distribution that minimizes the energy.   

The figure shows the result of such a jellium model 

for two different densities. Densities are characterized 

by the radius rs (in units of the Bohr radius) of the 

sphere that contains just one electron at the specified 

density: n = (4/3..r
3
)
-1

.  The calculation is from Lang 

and Kohn (PRB1, 4555(1970).  In addition to the 

surface dipole due to the charge density oscillations, an 

important contribution to the work function is due to 

the image potential. The “extracted electron” produces an image charge of opposite sign that 

creates a potential equal to –e/4z. 



Similar spilling of electronic density and the 

ensuing oscillations of negative charge occur 

near other geometrical barriers, as at step edges 

for example.  The electron density is depleted 

around the corner atom and increased at the 

bottom of the step.  This is called the 

“Smoluchowski” effect.  As a result, a positive 

dipole, with the positive end pointing out, is 

associated with step edges. This lowers the work 

function of step surfaces relative to the flat 

compact surfaces.  The highest work function is 

found on the most compact surfaces: (111) for 

fcc, (0001) for hcp, and (110) for bcc. 

 

Work function changes due to adsorbates 

 

 If an adsorbate is present with coverage , each molecule or atom having an associate 

dipole p, due to the chemical bond formed with the substrate atoms or as intrinsic to the 

molecule, we can view the surfaces as covered by a bilayer of + and – charge separated by z. 

 

 

The “field” inside the two surfaces is:  E = .N.e/o  

where N is the surface atomic density e the electron 

charge and o the dielectric constant and the potential 

difference, E. z,  should be the change in work 

function.  A quick estimation gives values of this change of fractions of 1 eV. 

 

Contact potential 

 

 The electric potential between isolated pieces 

of material is zero (no field).  However, if these 

pieces are joined by a conductive wire the Fermi 

levels of the materials become equal due to transfer 

of tiny amounts of charge from the low work 

function material to the high work function one.  

This creates an electric field in the space between 

the materials.  The voltage difference is called 

contact potential. 

 

Exercise: A sphere of Cu of 1 cm radius is connected 

to a Zinc metal plate.  The work functions are: Cu 

=5 eV, Zn = 4 eV.  When we connect the two with a 

conducting wire, how much charge is transferred to 

the Cu? 

If evenly spread on the surface, what would be the number of electrons per surface atom? 
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Measurement of the work function 

 

a) Thermionic emission 

 

One way to determine the value of the work function  is to heat the solid so to thermally 

excite electrons to energies above the vacuum level. Since work functions are typically a few 

electron volts, it is clear that the temperature necessary to populate levels at energy  above the 

Fermi level EF is rather high (kT  26 meV at room temperature). Thermionic emission 

experiments are carried out at temperatures of a few thousand degrees.  At a few eV from EF the 

Fermi-Dirac statistics that govern thermal electron energy distributions becomes equal to the 

classical Boltzman statistics. If N(pz) represents the number of electrons with momentum 

between pz and pz +dpz, the number of reaching the surface per unit area and unit time is: 

 

zz
z dppN

m

p
)(   (1) 

 

The emission current can be found by integration of this quantity for values of pz between a 

threshold value pzo and , where pzo
2
/2m = : 
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We have included a correction for the reflection probability at the surface r(pz) which is finite 

even for energies above .  The Boltzman distribution function N(p) is: 
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Substitution of (3) into (2) and integrating (assuming a constant r) gives: 
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In an experiment one measures I as a function of T.  The exponential term dominates 

expression (4), and so the slope of the line obtained by plotting log(I) vs -1/kT gives . 

 

 

b) Field Emission 

 

Another method of measuring the work function is field emission.  In this technique the sample 

is shaped into a sharp needle that is biased at a high voltage relative to another electrode placed 



nearby.  For a short radius of curvature at the tip apex the electric field E can be very high, even 

for moderate voltages because   E = Q/4or,  

 

The potential energy of an electron outside the metal tip is –e.E.x, where x is the distance from 

the tip: 

 

The electrons can tunnel through the roughly triangular 

potential barrier separating the inside and outside 

regions.  A calculation of this tunneling current leads to 

the Fowler-Nordheim equation: 

 

 

 

 

 

In a semilog plot  can be obtained from the slope of 

ln(j/E
2
) vs 1/E. 

 

 

c) The Kelvin method 
 

In this method we measure the current induced in the wire connecting two materials of difference 

work functions when the distance between the two is varied in a periodic way. The current is due 

to the change in capacitance and the contact potential difference: 

 

Q = C.V= C(z).(1 - 2)  

 

[= S/z.(1 - 2)  for a parallel plate capacitor] 

 

Modulating the distance z, for example with a sine wave:  z(t) = zo+z1.sin(t) 

 

I(t) = Q/t = C/z. z1..cos(t).(1 - 2) = Io.cos(t) 

 

The measurement consists in applying a voltage difference between the two such that the current 

I is zero: 

 

Io = 0 = C/z. z1.(1 - 2 + V) 

 

 

That gives 1 - 2 = - V 
 

We will later see how this technique can be implemented in an Atomic Force Microscope. In this 

way we will be able to “map out” the local value of (x,y) with very high spatial resolution (nm). 
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