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Lesson 8 

Diffraction from finite size crystals 

In the previous lesson we found that, in the kinematic approximation, the amplitude 

scattered in the direction of the wave vector k’ is given by: 
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We write rj as a function of the unit cell vectors a and b:      

 

rj = m.a + n.b,       and the index j is now determined by m and n 

Inserting this in the summation we get:   
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M and N are the number of cells in the a and b directions.  
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The important quantity is the intensity. The modulus square eliminates all the 

exponential terms of the form exp(ika).  So we obtain: 
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Whenever  k.a=2h (h=0, 1, 2, ….), i.e., in the direction of the diffracted beams 

for the infinite surface, both numerator and denominator become zero. The limiting value 

is (1/2M k a)
2
/(1/2 k a)

2
 = M

2
, and similarly N

2
 

for the b term.  The zeros of I(k) are the zeros of 

the numerators, which occur for: 

 

½.M.k.a  = m,  m= 0, 1, 2, … 

½.N.k.b  = n,    n = 0, 1, 2, … 

 

kx  = 2m/aM,  kx  = 2m/aM  

 

The graph of I(kx) looks like in the figure. 
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The diffraction spots are no longer sharp delta functions but instead are broad, with a 

width at half maximum of 2/aM.  The size of the domains can be measured from the 

spot size.  The simple rule is: the ratio of spot separation to spot width is equal to the 

number of unit cells in the domain.  If  a domain is large in the a direction and short in the 

b direction, the LEED pattern will show spots elongated in the b
*
 direction and narrow in 

the a
*
 direction. 

 

Stepped surfaces 
 

Stepped surface is a special case of a large but infinite unit cell with a finite periodic 

structure inside the cell (the terrace), which acts as a small crystal. Lets consider the 

surface consisting of terraces n-atoms wide separated by one atom high steps, as in the 

following sketch: 

The unit cell has unit vectors a and b; c is the step vector and g is the vector position 

inside the terrace.  The scattering amplitude is proportional to  (k  q): 
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The two infinite sums give the Laue conditions q.a = 2h (h = 0,1,2, …,-1,-2,…), and 

q.b = 2k (k = 0,1,2, …etc). So the LEED pattern will have lines of closely spaced spots 

(~1/b), separated by a larger distance (~1/a).  As we will see now, not all the spots in the 

lines are visible.  This is due to the unit cell structure factor S(k), the last term in A(q). 

Lets write it down explicitly (q, c and g are vectors): 
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The intensity is: 
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we have used the relation: q.ng = q.(b - c) = 2h –q.c.  Like before, the zeros of the 

denominator determine the intense diffraction maxima.  This occurs when 
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,  with l = 0, 1,2 …  (1) 

 

The term q.c produces a shift of the maxima. If we momentarily put it = 0, we get 

h = n.l.  Since n is the terrace width, the large 

maxima occur whenever h  is a multiple of n, i.e. 

they are separated by the number of cells in the 

terrace. If n = 5 for example, only the spots at 0, 5, 

10, 15 etc, are intense. In fact the intensity scales as 

(n+1)
2
 = 36 over the secondary maxima.  Notice that 

the first zero of the numerator (determining the 

width of the intensity envelope) occurs at 
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so that hzero = n/(n+1) < 1.  So even the first secondary maximum is outside the main 

envelope, at least for the special case assumed here of q.c = 0. This will occur for special 

values of the energy E. As E changes, so does q and q.c shifts the position of the 

principal maxima.  For example, if qc = 2, then putting this into (1) we get h-1 = l.n, so 

that now the principal maxima are centered in the spots h = 1, 6, 11, 16, …, and for qc = 

, the maxima are centered on h - 0.5 =l.n, i.e., on h = 0.5, 5.5, 10.5, ….  In this case we 

will have a doublet of spots. 

 

The LEED pattern is similar to that of the infinite terrace, i.e., it shows an hexagonal 

arrangement of spots (for the 111 surface), 

except that the spots are doublets, or singlets, 

depending on the energy. 

 

The formation of doublet spots can also 

be seen as the result of interference between 

reflections on the upper and lower terrace. 

When the conditions (incident energy and 

angles) are such that there is constructive 

interference in the direction of one “terrace” 

spot, we will have a singlet. If the 

interference is destructive, there will be 

extinction. However by deviating a little the 

k=0      1       2       3 

singlet 
doublet 

In-phase: singlet 
Out-of-phase 
doublet 

Diffraction patterns of the 

various stepped surfaces 

of platinum:

(a) Pt(S)-[9(111) x (111)], 140V. 

(b) Pt(S)-[6(111) x (100)], 140 V

(c) Pt(s)-[5(100) x (111)], 68 V
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(c)
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scatering direction the interference will be constructive again and a doublet (one on each 

side) will form. 

 

Determination of step heights and terrace widths 

 

From the above discussion we see that we can determine step heights and terrace 

widths from the beam energies at which doublets appear and dissappear. The important 

relation is q.c = h.  For simplicity lets consider the specular beam. If uz is a unit vector 

perpendicular to the surface 

q = uz.2kcos 

 

Where  is the angle of incidence and k the incident wavevector. The step height is: cz = 

c.uz, so that  

q.c = cz. 2kcos = h 
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The relation we need is: 
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  , for h = even we have a singlet 

for h = odd, doublet 

 

The slope of a plot of the E
1/2

 values determined experimentally, giving doublets or 

singlet spots versus h is a straight line. From the slope of this line we get cz. This 

immediately tells us whether the steps are mono- or multi-atomic high.  
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Miller indices of stepped surfaces 
 
Michel Van Hove developed a new 

and useful way of interpreting 

Miller indices of stepped surfaces 

…: 

 

(557) = 5(111) + (002) 

(332) = (664) = 5(111) + (11-1) 

 

The Miller indices have to 

correspond to allowed reflections, 

which for fcc means that all must be 

of the same parity (even or odd) 

 

Using scattering to monitor growth 
 

One very useful application of electrons and atom scattering is to study epitaxial 

growth, for example metals on metals or semiconductors in molecular beam epitaxy 

(MBE).  The idea is very simple: one monitors the intensity of the specularly reflected 

beam of electrons or atoms as a function of the evaporation time. If a fraction of a 

monolayer of material has formed an island on the surface or the substrate we have for 

the scattered amplitude 
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where  is the coverage, i.e., the fraction of second layer grown over the surface.  The 

intensity is 

 

I = 1-4(1-)sin
2
(q.c/2) 

 

If the angle of incidence is such that the interference is constructive, i.e., qc = 0, 2, 

4, …, then I =1 and stays constant.  This makes sense, since if the phase difference is a 

multiple of the wavelength, the electrons or atoms don’t see the island steps. If however, 

the interference is destructive, i.e., if qc = , 3, 5, …, then ideally 

 

I = 1-4(1-) 
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Which is a strongly oscillating function of .  Minima are reached at  = ½.  

Example: Cu grown on Cu(100) by evaporation, studied with He scattering: 

 

In this example the intensity oscillations do not recover to 1 after each monolayer 

completion indicating that the growth is not perfect, and defects, holes etc. are left behind 

in the growing film. 

Similar osicllations are observed using RHEED (= reflection high energy electron 

diffraction), in specular reflection to monitor growth.  RHEED is more extensively used 

since it is much easier to implement than atom scattering. 

 

Spot profiles 
 

The distribution of intensity around a diffraction spot contains interesting information 

about the structure of the domains or islands that produce them on the surface.  We have 

already seen that small domains broaden the spots in specific directions.   
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The following spot profiles can be produced by different arrangements and sizes of 

islands: 

a) flat surface: sharp point-like spot 

b) periodically stepped surface: doublet/singlet 

c) random height steps: broad spot  

d) equal-size terraces randomly distributed: central sharp spot with volcano-like 

ringrandom distribution of islands: sharp spot with shoulders on broad base 
 
 


