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Wetting and Capillarity phenomena 

  

The surface tension of liquids has familiar consequences on the contact geometry 

between liquids and solids or other liquids.  In the absence of contact, the free liquid 

adopts a spherical shape, since this minimizes the area and thus the surface energy (drops 

and bubbles).  If the surface tension of the liquid-vapor interface () is smaller than the 

difference between that of the solid-vapor (sv) and the solid-liquid (sl), then the liquid is 

said to wet the surface and a flat film will forms, because  + sl < sv. If the sum is larger, 

energy is minimized by forming droplets that only partially cover the surface. The 

quantity S = sv - sl -  is called the spreading coefficient. For S>0, the liquid spreads flat. 

For S<0, droplets form that adopt spherical-cap shapes, with a contact angle . 

 

The value of  is determined by the condition of mechanical equilibrium of line forces 

(the contact line does not advance or recede). Since the forces are tangent to the 

corresponding interface planes and perpendicular to the line, we have: 

sv = . cos + sl  (30) 

 

This is called the Young equation. For shallow droplets, (small contact angles) it can be 

rewritten as:  S = -1/22
. We will use this expression later on. 

The same result can be obtained by minimizing the total free energy as a function 

of droplet shape at constant volume. The minimization also shows that the shape is a 

spherical cap.  This is of course neglecting other forces, in particular gravity.  We shall 

come back to this subject later on. 

 The phenomena that are connected with the surface tension are called capillary 

phenomena. They include the above mentioned contact angle, as well as the capillary 

 
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raise or depression of liquids in narrow tubes against gravity forces, capillary waves, etc. 

Many of these manifestations have been used to experimentally determine the value of .  

 

The disjoining Pressure 

 In the preceding discussion of the effects of  the liquid films or droplets in 

contact with a solid or liquid surface were supposed to be macroscopic, or more precisely 

thicker than the range of the interaction forces with the surface.  If the liquid film is very 

thin the energy of a molecule is not saturated since no other molecules of the same liquid 

exist beyond the interface surface.  In other words, the free energy F (per unit surface), of 

the liquid in the film is different from that in the bulk material.  As the film changes 

thickness, so does F. The thickness (z) variable has a conjugate one, in analogy with the 

pressure and volume where p = -F/V.  So we have a new magnitude  for thin films, 

defined by the relation: 

 

 = -1/A. F/z  (31) 

 

 is called the disjoining pressure, and has dimensions of force per unit area.  depends 

on z (in addition to other thermodynamic variables, such as T, etc.).  As the film thickens 

to macroscopic values,  obviously goes to zero.  The disjoining pressure was introduced 

by Derjaguin, and is an important parameter to describe wetting phenomena of 

submicroscopic films. 

 The surface tension of an interface is a measure of the energy difference between 

fully coordinated atoms in the bulk and partially coordinated atoms near the surface. The 

forces of interaction between the atoms have a range that depends on the nature of the 

forces. For example they can be of very short range, ~1Å in chemical covalent bonds, or 

of tens or hundreds of Å in electrostatic (ionic) type interactions. Electrostatic forces are 

rarely manifested by a full Coulombic dependence of the 1/r
2
 form except very close to 

the ion, because of polarization effects from other ions or from dipoles in the medium. 

For example, in ionic solids the field outside the surface decays much faster that 1/r
2
 due 

to the multipole assembly of lattice ions. In solutions, ions of the opposite charge 
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accumulate in the vicinity of the ions in such a way that the electric field is shielded, as in 

the Debye model used above. 

 

Long-range Interaction forces between atoms and molecules 

 

a. Dipole-dipole interactions 

As an example of the interaction between neutral objects let’s consider the dipole-

dipole interaction. It is simple to show that the interaction energy of two dipoles with 

dipole moments p1 and p2 forming angles 1 and 2 with the line adjoining them is: 
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 where  is the angle between the planes through the respective dipoles and connecting 

line.  Dipoles with fixed orientations occur only in crystalline polar molecules.  More 

often, due to thermal agitation the dipoles rotate quasi randomly. The average interaction 

energy in this case can be found by using Boltzman statistics, where a weight is assigned 

to each orientation according to the factor exp(-E(1,2,)/kT). We give here just the 

result of such averaging.  
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where t  1/kT. After integration over the ’s and , only the second order term in the 

expansion of the exponential (which contains (E/kT)
2
, assuming E << kT), gives a non-

zero contribution. The thermally averaged energy (keeping r constant) is: 

62

2

2

2

1

)4(3

.
)(

kTr

pp
rE

o
  

This is called the Keesom interaction.  

 

Exercise: calculate the order of magnitude of the Keesom interaction for water 

molecules.  
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b. The Van der Waals-London interaction 

Another 1/r
6
 type interaction arises between neutral, non-polar atoms or molecules, 

due to “induced” dipoles, which is a purely quantum mechanical effect. This is the Van 

der Waals or London interaction.  It is simple to deduce an expression for this interaction 

in the semiclassical picture of the Bohr atom. The electrons are “orbiting” around the 

nucleus and therefore there is an instantaneous dipole moment p1 (~Bohr radius x 

charge). This produces a field Ez component, which decays as p1/4or
3
. In turn this field 

polarizes other atoms and induces in them a dipole p2 = E,  = polarizability. The 

interaction energy is therefore: 
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Exercise: Calculate the order of magnitude of the forces. Using 34 ooa  , one gets C 

~ 3.10
4
 kTRT Å

6
.   For molecular distances of a few angstroms (3.5

6
 = 2x10

3
), E~ 10kT. 

 

 The quantum mechanical origin of E appears only through the use of the Bohr 

radius and polarizability, which contain Planck’s constant h. An elegant deduction of this 

interaction that brings the quantum effects in a clear way is given in Kittel’s Solid State 

Physics book.  The interaction is the result of the decrease in the zero point energy of the 

interacting dipoles. 

 

 Another remark about the London force is that it assumes infinite propagation 

speed of the fields of the interacting dipoles. Since the speed of light is the maximum 

speed, it is clear that at sufficiently large distances (r >> c/) there will be a phase lag of 

more than 180º between the exciting field and reemitted field (photon) as it reaches the 

source.  The effect of this is to decrease the strength of the interaction.  This is the so-

called retardation effect. Casimir and Polder [Phys. Rev. 73, 36 (1948)] showed that 
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retardation leads to a different distance dependence:  E ~ -Cret/r
7
. So the exponent in the 

power law increased from 6 to 7 as the distance increases beyond the wavelength of the 

photons of freq. . 

 

The Hamaker constant 

 In this section we will use a much simpler 

model to illustrate the origin and effect of 

unsaturated forces on the atoms near the surface. We 

will assume that particles interact with each other 

with -1/r
6
 forces and that these forces are additive, an 

assumption which we know is not correct. In spite of 

this, the procedure gives surprisingly good results.  

 

To analyze the effect of finite film thickness on its interaction with the surface we use the 

geometry shown in the figure.  The total energy of a molecule inside medium 1 is: 
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where the first three terms represent the energy due to similar molecules in the film. The 

integration starts at r = a, the diameter of a molecule.  The C’s are the constants in the van 

der Waals attractive energy terms. The n's are the particle densities.  

After all the integrations are done we get  
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Where:  211212
~     and   311313
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The so-called Hamaker constant H is: 
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It can be shown that: 221112 CCC  , and similarly for C13. The quantity: 1111 Cn , is 

the index of refraction of medium 1. 

)).(( 3121
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Exercise: Orders of magnitude:  C23 is of order ~10
-77

 Jm
6
, and the densities are n ~ 10

28
 

m
-3

.  Therefore, the Hamaker constant is H ~ 10
-19

 J ~ 0.1 eV. 

 

Special cases: 

a) n1 = n2 = 0.  This is the simple case of a free surface.  The energy is simply: 

SVeE  .  (we dropped the indices) 

 

b) n1 = 0.  Two media (2 & 3) separated by vacuum. 
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which is always an attractive force. 

 

c) Thin film on a surface (n3 = 0, vapor; solid, s = 2, liquid, l = 1): 
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The gammas are the solid-liquid and vapor-liquid surface tensions.   
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We have the following interesting result that if 1 > 2, i.e., if the liquid is 

optically denser than the solid, there is attraction between the surfaces. This means that 

the film is unstable against collapse (droplet formation) that brings the surfaces together 

in parts of the film, and of course far away in others to keep the volume constant. If on 

the contrary 1 < 2, the film is stable since the two surfaces repel each other. The film 

wets the solid surface.  If one considers a solid covered by a liquid film of the same 

substance (like in melting), usually l < s, so that the melt wets its solid. In the case 
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where l > s, the liquid does not wet its own solid.  However this result is not applicable 

to water, since the interactions are not properly described by a Van der Waals formula. 

 An interesting case is that where there are no forces between surfaces. This is 

convenient in AFM applications.  A dielectric fluid with this property will suppress the 

van der Waals forces between tip and surface.  The condition H = 0, is fulfilled for 1 = 

2, or 1 = 3.  For 1 in between these two values, there is repulsion between tip and 

surface. For 1 outside the two values, there will be attraction.  

 

The result of the integration over the differently shaped volumes is shown in the 

figures, where H = 
2
.C.n1.n2 is the Hamaker constant.  From Israelachvili’s book (the 

book uses A instead of H for the Hamaker constant): 
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Shape and thickness of microscopic liquid films 

 We are now ready to re-examine the wetting of liquids 

on solid surfaces which we discussed above for the macroscopic 

case, where surfaces and interfaces were characterized by their 

tensions () alone.  The macroscopic approach means that the 

size of the liquid film (thickness) or droplets (height) is larger 

than th e range of the surface forces (up to ~ 1000 Å).  Below 

that, the energy per molecule is not saturated to its bulk value, 

and if we use the bulk surface or interface tensions, we must 

correct for the surface forces.  Pierre-Gilles de Gennes (1932-

1997), Noble Prize in Physics in 1991, was one of the most influencial scientist in 

developing the microscopic wetting theory. 

 

 Surface forces give rise to the concept of disjoining pressure. We have seen forces 

originating from Van der Waals interactions that decay as 1/r
6
. We have seen that since 

there are three media involved, the disjoining pressure can be attractive or repulsive, 

depending on the value of the dielectric constants. Other forces besides Van der Waals 

can also be present, for example chemical and structural forces due to the short range 

interaction between molecules and between molecules and the substrate, electrostatic 

forces, “double layer” forces from solvated ions, hydrophobic and hydrophilic forces due 

to H-bonds, etc.  A good discussion of the various surface forces can be found in the 

book of J. Israelachvili. 

  

Pierre-Gilles de Gennes 
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Sufficiently far away from the surface, when strong bonding forces have decayed 

to negligible values the Van der Waals force always remains. As we have seen, the 

potential energy is of the form: 
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The disjoining pressure in this case is: 
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which can be attractive or repulsive.  The free energy of a surface covered by a thin film 

is then: 

)()( zPzF sl    

 

P(z) is a decreasing function of z (in absolute value). In the limit when z0 we must 

have F(0) = sv , which is the solid-vapor surface tension. Therefore the limiting value of 

P(z0) = S = sv - sl -  , which is the spreading coefficient.  

The shape of a thin liquid film on a surface depends on the sign of the two 

important magnitudes S and P.  We have seen that if P>0, the liquid-vapor and the solid-

liquid interfaces “repel” each other or the disjoining pressure is positive (we have to press 

against the liquid surface to keep it from expanding). If S>0, the film wants to spread. 

These two opposing tendencies equilibrate by the formation of a flat pancake of 

thickness, h.  The value of h can be found by minimization of F at constant liquid volume 

V (= Az): 

F(z) = F0 –A.S+A.P(z) 

Minimization gives:      S = h.(h) + P(h) 

 

It is easy to see how to determine h 

graphically: it is determined from the 

tangent of a line through (z=0, S) to 

the P(z) curve: 
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 When non-wetting droplets form, their shape z(r) that can be determined by 

minimization of: 

 

𝐹(𝑑𝑟𝑜𝑝) = 𝐹𝑜 +  ∫ 2𝜋𝑟𝑑𝑟 [−𝑆 +  
𝛾

2
(

𝑑𝑧

𝑑𝑟
)

2

+ 𝑃(𝑧) + 𝑔(𝑧) −
𝜇𝑣𝑎𝑝𝑜𝑟 − 𝜇𝑙𝑖𝑞

𝑣𝑚𝑜𝑙
. 𝑧]   

This is the total free energy of the system, where the first term includes the energy of the 

dry surface (Fo), and the term S includes the energies of the dry part (not covered by the 

drop), the solid-liquid contribution (sl) and the macroscopic value of the liquid-gas () 

surface energies. The second term inside the integral is the correction for the liquid-gas 

area due to its curvature.  g(z) is the gravitational potential energy of the column of 

liquid, which is negligible in Nanoscale droplets and will thus be neglected here. The last 

term in the expression applies in the case where the droplet is growing in size due to 

condensation, but here we will assume no growth, i.e., vapor = liquid. 

 

The equilibrium shape of the droplet is one that minimizes F(drop) subject to the 

condition:   drop
drrV .2  = constant.   

 

The solution by the method of Lagrange multipliers requires numerical methods in 

general.  We first create the function f(r,z,z’) = F - V.  (with z’ = dz/dr).  Where  is the 

Lagrange multiplier.  

 

The solution of the minimization problem is obtained from the Euler-Lagrange equation: 
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−
𝑑

𝑑𝑟

𝜕𝑓

𝜕𝑧′ +
𝜕𝑓

𝜕𝑧
 = 0 

 

Substituting we get:   P’(z) -  = .z” +z’/r, (I) 

 

which can be integrated in z between z and h (top of the drop): 

𝑃(𝑧) − 𝑃(ℎ) −  𝜆(𝑧 − ℎ) =  
𝛾

2
z’2 +  𝛾 ∫

𝑧′2

𝑟

𝑧

ℎ

𝑑𝑟 

(since the integral is over dz, we need to replaced by z’.dr  in the terms that contain r 

explicitly). 

In many experiments it is found that the shape of droplets is very close to a spherical cap, 

which is usually a very good approximation near the cusp (see AFM images in the 

example below).  Therefore we will approximate the cusp of the droplet by a spherical 

cap of radius R, so that : 

z” = - (1+z’
2
)/√𝑅2 − 𝑟2 

 

For r  0 this gives z”(h) = - 1/R 

We can get the value of  from (I) in the limit where r  0:   P’(h) -  = -/R 

Using this value of  and inserting it into (I) we get:  

𝑃(𝑧) − 𝑃(ℎ) − (
2𝛾

𝑅
+ 𝑃′(ℎ))(𝑧 − ℎ) =  𝛾 ∫

𝑧′2

𝑟

𝑧

ℎ

𝑑𝑟 

 

The last integral, in the spherical cap approximation, is = -/R.(z-h).  

We do not expect the drop to be a spherical cap near the edges, but we know that there 

z’(redge) ~ 0 (see figure below).  So, we get finally for z  0:    

𝑃(0) − 𝑃(ℎ) + (
𝛾ℎ

𝑅
+ ℎ. 𝑃′(ℎ)) =  0 

 

We now use the relations:  (z) = -dP/dz;  and P(0) = S = -1/2. o
2
,  and by analogy we 

define 2
 = 2h/R, which is easier to measure in Nanoscale droplets (see figures below).  
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We then obtain finally: 
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where  is the Nanoscale contact angle of a droplet of height h and 0 = macroscopic 

contact angle.  This formula predicts that the contact angle decreases as h decreases (P, 

<0).  This is to be expected since in this case the surface of the liquid and the solid 

“attract” each other, which tends to flatten the drop. 

 

 The example in the non-contact AFM figure shows the condensation of glycerol 

onto mica surfaces, made hydrophobic due to initial contamination. As the glycerol vapor 

condenses the droplets grow in size.  The contact angle is measured in each droplet by 

fitting a sphere tangential to the cusp of each drop profile.  

 

In a paper published in J. Phys. Chem. B 102, 7210 (1998), the authors used the 

measured ‘contact angle’ (from 2h/R) as a function of droplet height to find the potential 

P(z).  Of the various forms examined, only the exponential dependence P ~ -Po. exp(-z/d) 

gave a good fit, as shown by the  semilog plot of P(h) vs h in the inset. The fitting 

parameters were d= 5 nm, and the strength of the potential at e =0 (i.e., the spreading 

coefficient) S =-6.4x10
-5

 J/m
2
.  This gives a value for the negative disjoining pressure of 

~1 atm.  The exponential dependence of P(z) might be indicative of structural or 

hydrophobic attractive forces between the glycerol-air interface and the glycerol-mica 

interface. 
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This example clearly illustrates how by studying the wetting behavior, shape and size of 

nanoscale liquid films and droplets can provide a good understanding of the interaction 

potentials with substrates. 

 

For interested readers, the classical books of A. Adamson, and by J. Israelachvili 

mentioned in the Syllabus provide extensive coverage of these topics.  

Another very good book is by Pierre de Gennes, Francoise Brochard-Wyart and David 

Quere:  “Capillarity and Wetting Phenomena”, published by Springer. 

 

Other literature:  

“Studies of wetting and capillary phenomena at nanometer scale with scanning 

polarization force microscopy”, by L. Xu and M. Salmeron.  Chapter 6, pp.243-287  of 

the book “Nano-Surface Chemistry”, ed. By M. Rosoff. Nework: Marcel Dekker, 2001. 

 


